
Oboe: Collaborative Filtering for AutoML Model Selection
Chengrun Yang, Yuji Akimoto, Dae Won Kim, Madeleine Udell

Cornell University

What is AutoML?

an Automated Machine Learning (AutoML) system
• chooses an algorithm together with hyperparameters
• to achieve the best performance on a (supervised learning) task
• without human intervention.
why AutoML?
• humans are expensive (especially data scientists!)
• computation is cheap
• too many models; can’t try them all
to find a reasonable answer, fast, we need:
• Information. What meta-features predict model performance?
• Speed. What meta-features are worth computing?

Training

Validation

Test

Learning

(a) Learning

Training

Validation

Test

Learning

Training

Metalearning

Validation

Test

Training

Validation

Test

Metatraining

Meta
validation

Meta
test

(b) Meta-learning

Our approach

main idea used by Oboe:
• algorithm performance is low rank
• rank decomposition gives best meta-features
• the rest is engineering. . .

data
preprocessing

error matrix
generation

compute low
dimensional
algorithm
features

timeconstrained
model selection

infer
performance of
other models

ensemblingdata
preprocessing

offline stage

time target doubling

 timeconstrained online stage

training datasets

test dataset predictions

time
remains?

Yes

No

c.f. previous SOTA in AutoML: auto-sklearn [2]

at train time (offline stage):
• compute meta-features of training datasets.
• determine best model(s) on training datasets (try them all and pick the best!)
at test time (online stage):
• compute meta-features of test dataset.
• find similar datasets (w.r.t. meta-features)
• form ensemble using models that performed best on similar datasets
• tune hyperparameters

e.g., using Gaussian processes [2, 3, 5], bandit-based methods [6], sparse Boolean functions [4] , . . .

Find the meta-features that best predict performance

given: m training datasets, n machine learning models
measure: error of each model on each dataset
form: m× n error matrix E (yellow)
find: X ∈ Rm×k, Y ∈ Rk×n (orange) for which

PCA

impute
(white	entries)

models

da
ta
se
ts

dataset	latent	meta-features

da
ta
se
ts

models

m
od
el
	la
te
nt
	m
et
a-
fe
at
ur
es

X YE

interpretation:
• rows xi ∈ Rk of X are dataset meta-features
• columns yj ∈ Rk of Y are model meta-features
• xiyj ≈ Eij are predicted model performance
prefix property: SVD on error matrix gives optimal k-dimensional meta-features for every k

AutoML = linear algebra

at test time (online stage)
• new test dataset = new row of E (blue and white)
• run some algorithms on new dataset (blue blocks, observed)
• estimate dataset latent meta-features x̂ (green blocks) using least squares
• estimate model performance (white blocks) as ê = x̂Y

• select models with best predicted performance to use in ensemble

Test time: which models to run?

choose fast, informative models (blue blocks)
• predict runtime t̂j of model j on test dataset (predictors = # data points, # features)
• Use (D-optimal) experiment design to choose fast, informative models. Solve

minimize
vj

log det
(n∑
j=1

vjyjy
T
j

)−1

subject to
n∑
j=1

vj t̂j ≤ τ

vj ∈ [0, 1] ∀j ∈ [n].
• Value vi is large for fast, informative models. Run those! (blue blocks)
(must run at least k models to fit k-dimensional latent meta-features)

Put it in a loop

given time budget τ for learning on new dataset
initialize rank k = k0, time target t = τ0 < τ/2
while time remains
• choose k fast, informative models using experiment design
• run those models on the dataset and use to infer performance of other models
• create ensemble using models with predicted best performance
• double time budget t, increase rank k

It works!

Experimental setup.
• Datasets: OpenML [8] and UCI [1] with 150–10,000 data points and no missing entries.
• error matrix

• 418 OpenML datasets by 219 models
• Metric: balanced error rate

• Candidate algorithms from Python scikit-learn: Adaboost, decision tree, extra trees,
random forest, gradient boosting, Gaussian naive Bayes, kNN, logistic regression,
multilayer perceptron, perceptron, kernel SVM, linear SVM

Numerical results
• Oboe achieves SOTA performance

1.0 2.0 4.0 8.0 16.0 32.0 64.0
runtime budget (s)

1.8

1.9

2.0

2.1

2.2

ra
n

k
(m

ea
n
±

st
an

d
ar

d
er

ro
r)

(a) Ranking on OpenML datasets
(meta-LOOCV) as a function of
time.

1.0 2.0 4.0 8.0 16.0 32.0 64.0
runtime budget (s)

1.4
1.6
1.8
2.0
2.2
2.4
2.6

ra
n

k
(m

ea
n
±

st
an

d
ar

d
er

ro
r)

(b) Ranking on UCI datasets
(meta-test) as a function of time.

2.0 4.0 8.0 16.0 32.0 64.0
runtime budget (s)

1.6

1.8

2.0

2.2

2.4

av
er

ag
e

ra
n

k

Oboe

auto-sklearn

random

• Modeling assumptions are warranted

(a) Meta-LOOCV runtime
prediction performance on 418
OpenML classification datasets
with number of points
150–10,000.

(b) Meta-test runtime
prediction performance on 72
subsampled OpenML
classification datasets with
original number of points
10,000–200,000.

0 10 20 30 40 50
index i

100

101

102

103

104

105

σ
i

Error matrix E is
(apx) low rank [7]

• Experiment design selects most informative models

5(2%) 15(6%) 25(11%) 35(15%)
number (percentage) of observed entries

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

re
gr

et
(m

ea
n
±

st
an

d
ar

d
er

ro
r)

5(2%) 15(6%) 25(11%) 35(15%)
number (percentage) of observed entries

1.5

2.0

2.5

3.0

3.5

4.0

ra
n

k
(m

ea
n
±

st
an

d
ar

d
er

ro
r)

5(2%) 15(6%) 25(11%) 35(15%)
number (percentage) of observed entries

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

re
gr

et
(m

ea
n

±
st

an
d
ar

d
er

ro
r)

ED (number)

ED (number) with meta-features

QR

QR with meta-features

PMF

Comparison of sampling schemes (QR or ED) in Oboe and PMF. "QR" denotes QR decomposition with
column pivoting; "ED (number)" denotes experiment design with number of observed entries constrained.
The left plot shows the regret of each AutoML method as a function of number of entries; the right shows
the ranking of each AutoML method in the regret plot (1 is best and 5 is worst).

Thanks!

• Chengrun Yang: cy438@cornell.edu
• Madeleine Udell: udell@cornell.edu

Bibliography
[1] Dua Dheeru and Efi Karra Taniskidou. UCI machine learning repository, 2017.
[2] Matthias Feurer, Aaron Klein, Katharina Eggensperger, Jost Springenberg, Manuel Blum, and Frank Hutter. Efficient and robust automated machine learning. In Advances in

Neural Information Processing Systems, pages 2962–2970, 2015.
[3] Nicolo Fusi and Huseyn Melih Elibol. Probabilistic matrix factorization for automated machine learning. Advances in Neural Information Processing Systems, 2018.
[4] Elad Hazan, Adam Klivans, and Yang Yuan. Hyperparameter Optimization: A Spectral Approach. arXiv preprint arXiv:1706.00764, 2017.
[5] Kirthevasan Kandasamy, Willie Neiswanger, Jeff Schneider, Barnabas Poczos, and Eric Xing. Neural Architecture Search with Bayesian Optimisation and Optimal Transport.

Advances in Neural Information Processing Systems, 2018.
[6] Lisha Li, Kevin Jamieson, Giulia DeSalvo, Afshin Rostamizadeh, and Ameet Talwalkar. Hyperband: A novel bandit-based approach to hyperparameter optimization. ICLR, 2017.
[7] Madeleine Udell and Alex Townsend. Why are big data matrices approximately low rank? SIAM Journal on Mathematics of Data Science, 1(1):144–160, 2019.
[8] Joaquin Vanschoren, Jan N. van Rijn, Bernd Bischl, and Luis Torgo. OpenML: Networked Science in Machine Learning. SIGKDD Explorations, 15(2):49–60, 2013.

