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What is AutoML? Find the meta-features that best predict performance It works!

an Automated Machine Learning (AutoML) system given: m training datasets, n machine learning models Experimental setup.

measure: error of each model on each dataset « Datasets: OpenML [8] and UCI [1] with 150-10,000 data points and no missing entries.
form: m X n error matrix £ (yellow)

= to achieve the best performance on a (supervised learning) task . mxk kxn . = error matrix
find: X €R Y eR (orange) for which = 418 OpenML datasets by 219 models

= Metric: balanced error rate

= chooses an algorithm together with hyperparameters

= without human intervention.

- models dataset latent meta-features
why AutoML* . el » Candidate algorithms from Python scikit-learn: Adaboost, decision tree, extra trees,
—
- humans are expensive (especially data scientists!) PCA ‘§ random forest, gradient boosting, Gaussian naive Bayes, kNN, logistic regression,
. . ” > C-ITi . .
. computation is cheap 2 - 2 g multilayer perceptron, perceptron, kernel SVM, linear SVM
g 8 °
= too many models; can't try them all S § 3 £ ]
. impute = Numerical results
to find a reasonable answer, fast, we need: (white entries) 5 |
| | S « Oboe achieves SOTA performance
« Information. What meta-features predict model performance?
: i o7 . . s .
Speed. What meta-features are worth computing® interpretation: : S
k Ehe S04 -
- o\ - N[ = rows x; € R" of X are dataset meta-features <91 ‘— =P — |
@® = 4.
- — Mty | Vb e = columns y; € R* of Y are model meta-features o200/ G20 T
Training Q Z' o Z' 18
- E Validation Validatior] [Validation =X Zy] ~ EZ] are pr edlCted mOde/ PEr f ormance S ‘ | 1.6 | |
SCDD U _/ = E18 él n —— Oboe
= — S -] T Test Test prefix property: SVD on error matrix gives optimal £-dimensional meta-features for every £ <10 20 40 80 160 320 640 =5 1.0 20 40 80 16.0 32.0 64.0 auto-sklearn
=% Validation Meta- | | Meta = runtime budget (s) = runtime budget (s) random
= Meta-training . _ _
N ~) yalidation | test | . (a) Ranking on OpenML datasets  (b) Ranking on UCI datasets
| AutoML = linear algebra . . .
. (meta-LOOCV) as a function of (meta-test) as a function of time.
N\ % Test Meta-learning :
time.
(a) Learning (b) Meta-learning at test time (online stage) = Modeling assumptions are warranted
« new test dataset = new row of £ (blue and white . Ao . Ao
Our approach ( ) . .
= run some algorithms on new dataset (blue blocks, observed) ; 107
. ~ . EZS ° kI;IN o ® kNN o 1 4
main idea used by Oboe: - estimate dataset latent meta-features & (green blocks) using least squares : Lo Rogemin Lo Rogumin 183
- . = estimate model performance (white blocks) as é = Y I 4 Do ol e S 102
= algorithm performance is low rank | | | o s o s 10
. . « select models with best predicted performance to use in ensemble ol A " S ——
= rank decomposition gives best meta-features wchal e ) e ) e
(a) Meta-LOOCV runtime (b) Meta-test runtime vl S0 Al el

= the rest is engineering. . . - -
the rest Is engineering prediction performance on 418 prediction performance on 72

Test time: which models to run? Error matrix E is

4 offline stage ) OpenML classification datasets subsarppled OpenML
] . ‘E;?mp‘lt? 10V1V with number of points classification datasets with (aPX) low rank [7]
. ata error matrix imensiona ] ] . :
training datasets|—> o ocessing | 7| genmeration | | algorithm choose fast, informative models (blue blocks) 150-10,000. original number of points
9 features | R 10,000-200,000.
= predict runtime ¢; of model j on test dataset (predictors = # data points, # features) - Experiment design selects most informative models
4 | time-constrained online stage \ - Use (D-optimal) experiment design to choose fast, informative models. Solve B 0
: : infer S 0.035 “
test dataset —> data : _)tlmeciclonsltra;ned_) performance of —>» ensembling predictions o n T —1 §0.030< %3.5- m
preprocessing model selection other models minimize log det Z vjyjyj 2002 5§ | N
n H0.015 a5
su bject to Z /U]t S T EES;O.OH)‘ 22.0_ M —— ED (umber)
]:1 § 0.0051 _ 'é —— ED (number) with meta-features
. 20000 on ™ 15(6%) 25(11%) 35(15% E LS50y 15(6%) BOIR) BIR) . — Ot metedounes
\ time target doubling Uj - [07 1] \v/.] - [n] . nflmb)er (pil(“cenzcage)(o% olzseri(ed en)tries nugnbe>r (perf:ent)age) (()f obgervegi ent)ries —— SI\PZF e
- Value v; is large for fast, informative models. Run those! (blue b|0CkS) Comparison of sampling schemes (QR or ED) in Oboe and PMF. "QR" denotes QR decomposition with
. - ] ' . _ X ' column pivoting; "ED (number)" denotes experiment design with number of observed entries constrained.
c.f. previous SOTA in AutoML: auto-sklearn [2] (mUSt run at least & models to fit k-dimensional latent meta_features) The left plot shows the regret of each AutoML method as a function of number of entries; the right shows
the ranking of each AutoML method in the regret plot (1 is best and 5 is worst).
at train time (offline stage): -y -
( ge) Put it in a loop Thanks!
= compute meta-features of training datasets.
- determine best model(s) on training datasets (try them all and pick the best!) given time budget 7 for learning on new dataset = Chengrun Yang: cy438@cornell.edu

initialize rank k£ = ky, time target t = 79 < 7/2 = Madeleine Udell: udell@cornell.edu

at test time (online stage):
while time remains

compute meta-features of test dataset.

. . = choose k fast, informative models using experiment design Bibliograph
= find similar datasets (w.r.t. meta-features) & P 5 oy Dhg d[E)f. Ky e e
= run those models on the dataset and use to infer performance of other models 1 Dua Dhee and B Karrs Tansiadon, el machine feamine epostion: 207 = o .
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