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What is AutoML?

an Automated Machine Learning (AutoML) system
• chooses an algorithm together with hyperparameters
• to achieve the best performance on a (supervised learning) task
• without human intervention.
why AutoML?
• humans are expensive (especially data scientists!)
• computation is cheap
• too many models; can’t try them all
to find a reasonable answer, fast, we need:
• Information. What meta-features predict model performance?
• Speed. What meta-features are worth computing?
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(b) Meta-learning

Our approach

main idea used by Oboe:
• algorithm performance is low rank
• rank decomposition gives best meta-features
• the rest is engineering. . .
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c.f. previous SOTA in AutoML: auto-sklearn [2]

at train time (offline stage):
• compute meta-features of training datasets.
• determine best model(s) on training datasets (try them all and pick the best!)
at test time (online stage):
• compute meta-features of test dataset.
• find similar datasets (w.r.t. meta-features)
• form ensemble using models that performed best on similar datasets
• tune hyperparameters

e.g., using Gaussian processes [2, 3, 5], bandit-based methods [6], sparse Boolean functions [4] , . . .

Find the meta-features that best predict performance

given: m training datasets, n machine learning models
measure: error of each model on each dataset
form: m× n error matrix E (yellow)
find: X ∈ Rm×k, Y ∈ Rk×n (orange) for which

PCA

impute
(white	entries)

models

da
ta
se
ts

dataset	latent	meta-features

da
ta
se
ts

models

m
od
el
	la
te
nt
	m
et
a-
fe
at
ur
es

X YE

interpretation:
• rows xi ∈ Rk of X are dataset meta-features
• columns yj ∈ Rk of Y are model meta-features
• xiyj ≈ Eij are predicted model performance
prefix property: SVD on error matrix gives optimal k-dimensional meta-features for every k

AutoML = linear algebra

at test time (online stage)
• new test dataset = new row of E (blue and white)
• run some algorithms on new dataset (blue blocks, observed)
• estimate dataset latent meta-features x̂ (green blocks) using least squares
• estimate model performance (white blocks) as ê = x̂Y

• select models with best predicted performance to use in ensemble

Test time: which models to run?

choose fast, informative models (blue blocks)
• predict runtime t̂j of model j on test dataset (predictors = # data points, # features)
• Use (D-optimal) experiment design to choose fast, informative models. Solve

minimize
vj

log det
( n∑
j=1

vjyjy
T
j

)−1

subject to
n∑
j=1

vj t̂j ≤ τ

vj ∈ [0, 1] ∀j ∈ [n].
• Value vi is large for fast, informative models. Run those! (blue blocks)
(must run at least k models to fit k-dimensional latent meta-features)

Put it in a loop

given time budget τ for learning on new dataset
initialize rank k = k0, time target t = τ0 < τ/2
while time remains
• choose k fast, informative models using experiment design
• run those models on the dataset and use to infer performance of other models
• create ensemble using models with predicted best performance
• double time budget t, increase rank k

It works!

Experimental setup.
• Datasets: OpenML [8] and UCI [1] with 150–10,000 data points and no missing entries.
• error matrix

• 418 OpenML datasets by 219 models
• Metric: balanced error rate

• Candidate algorithms from Python scikit-learn: Adaboost, decision tree, extra trees,
random forest, gradient boosting, Gaussian naive Bayes, kNN, logistic regression,
multilayer perceptron, perceptron, kernel SVM, linear SVM

Numerical results
• Oboe achieves SOTA performance
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(a) Ranking on OpenML datasets
(meta-LOOCV) as a function of
time.
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(b) Ranking on UCI datasets
(meta-test) as a function of time.
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• Modeling assumptions are warranted

(a) Meta-LOOCV runtime
prediction performance on 418
OpenML classification datasets
with number of points
150–10,000.

(b) Meta-test runtime
prediction performance on 72
subsampled OpenML
classification datasets with
original number of points
10,000–200,000.
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Error matrix E is
(apx) low rank [7]

• Experiment design selects most informative models
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Comparison of sampling schemes (QR or ED) in Oboe and PMF. "QR" denotes QR decomposition with
column pivoting; "ED (number)" denotes experiment design with number of observed entries constrained.
The left plot shows the regret of each AutoML method as a function of number of entries; the right shows
the ranking of each AutoML method in the regret plot (1 is best and 5 is worst).

Thanks!

• Chengrun Yang: cy438@cornell.edu
• Madeleine Udell: udell@cornell.edu
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