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Modern neural networks are expensive to train

Training increasingly larger models entails significant computational costs:
• $80k - $1.6M to train a BERT model with 1.5-billion parameters
• over $4.6M to train GPT-3 using a Tesla V100 cloud instance
Memory as a major bottleneck
Heavy memory consumption in training deep models entails surging cost.
Specifically, there are three types of memory in deep learning:
• model memory (parameters)
• activation memory (layer outputs; usually dominate)
• Optimizer memory (gradients, momentum, . . .)
Low-precision (LP) training
Using low-precision representations for network weights, activations, optimizer:
• (+) reduces memory usage
• (+) accelerates computation
• (+) saves energy
but (−) introduces quantization error.
We focus on floating-point (FP) numbers in this work. An example of 8-bit FP format:
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Figure 1: An 8-bit FP format representing (−1)sign · 2exponent−7 · 1.b3b2b1b0.

Mixed-precision training [1] is a popular and effective training paradigm:
• use lower precision formats (e.g. FP16) for network weights and activations
• use higher precision formats (e.g. FP32) for the optimizer
• define low-precision configuration = {lower precision format, higher precision format}
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Tradeoff between cost and error

Fundamental challenge: how to select a proper low-precision configuration?
Low-precision training requires careful tuning to reduce cost and control error.
• hyperparameters: what are the best low-precision formats?
• goal: efficiently pick the best low-precision configuration under a memory budget.
• key: identify the Pareto frontier (i.e. set of non-dominated low-precision
configurations), which characterizes the tradeoff between memory and error.
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(a) error vs memory tradeoff on
CIFAR-10, across 99 LP configurations
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(b) # activation bits in non-dominated
configurations, on 87 image datasets

PEPPP: Pareto Estimation to Pick the Perfect Precision

We propose PEPPP, a novel AutoML system that studies the error-memory tradeoff in low-
precision training and facilitates inference without exhaustive search:
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PEPPP contains two main stages:
• meta-training: find the Pareto frontiers of a collection of related tasks.
• meta-test: efficiently estimate the Pareto frontier of a novel task, based on information
learned on previous tasks.

PEPPP Methodology

Meta-training: learn from related tasks
1 Collect the error and memory matrices:
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With a specific model (e.g., ResNet-18),
• Eij: test error of the j-th low-precision configuration on the i-th dataset
• Mij: training memory with j-th low-precision configuration on the i-th dataset

2 Obtain embeddings for datasets and LP formats by matrix factorization (MF)

Meta-test: efficiently extrapolate to new tasks
• Evaluate a few cheap but informative low-precision formats on the new dataset:
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• Selection method: experiment design with matrix factorization (ED-MF)

(a) Linear regression to avoid exhaustive search.
×: configurations selected by ED-MF
?: configurations whose performance is predicted

(b) D-optimal experiment design

Experimental results

Setup: 87 vision datasets on 99 different low-precision configurations, across 6 architectures.
Evaluation metrics: (a) convergence, (b) HyperDiff.
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Meta-training: more evaluations improve prediction on missing configurations.
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(a) sampling ratio 5%
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(b) sampling ratio 20%
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Meta-test: ED-MF consistently outperforms competing methods:
• BO-MF: Bayesian optimization with matrix factorization
• BO-full: Bayesian optimization with full meta-training data
• Random-MF: random selection with matrix factorization
• random high-memory: randomly select the LP configuration with highest memory
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Figure 7: Relative performance with respect to ED-MF in meta-test. ED-MF outperforms in most cases.
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