TenlPS: Inverse Propensity Sampling for Tensor Completion

Tensors

On an order-3 tensor B, for each of the modes n € (3] := {1, 2, 3}:

= size of the n-th mode: I,
= mode-n fibers: fixing every index but the n-th. e.g., mode-1 fiber: B.;

- mode-n unfolding: matrix B, whose columns are mode-n fibers

tensor decomposition: CP, Tucker (this paper), tensor-train, ...
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Figure 1: Tucker decomposition with multilinear rank (r1,7r9,73): B =G x1 Uj x9 Uy x3 Us.

tensor completion
Given a partially observed B, € R/ >IV e have

- observation pattern Q € R/>xIx. Q;, =11t B; ;. is observed, and 0 otherwise
- observation probability P € RIv<>v: P, . =TP(Q,; ;. =1)=DP(B, ;. is observed)
missingness types {Pi v}

missing-completely-at-random (MCAR) uniform

missing-not-at-random (MNAR) non-uniform

1-bit matrix completion
Given a binary matrix Y € {0, 1}"™*", predict the parameter matrix M € R""*"
Assumptions:

« M is approximately low rank.
= There exists a link function o: R — [0, 1], such that P(Y;; = 1) = o(M;;) for
(2,7) € [m] x[n].

Low rank surrogates for M: low nuclear norm, low max norm, ...

Our problem formulation: MNAR tensor completion

Input: MNAR data tensor B, € RIi7/2xxly
Assumptions:

- true data tensor B € R/™*2X*Iv is gpproximately low multilinear rank

- noiseless observation: (B, ;v = B, iy if B is observed, and 0 otherwise

iy
- unknown parameter tensor A € RI2XxIx ha5 the same rank structure as B

- 1-bit observation: With the observation propensity tensor P € R/ /x>y
P(Bilz’gmzj\f IS ObSGI’VGd) — j)i1i2"'iN — U(.Aili2...7;N), in which o: R — [O, 1] IS a
non-decreasing link function.

Algorithm Step 1: propensity recovery

Given a mask tensor (), get a predicted propensity tensor P.

algorithm hyperparameters

Choice 1: CONVEXPE proximal-proximal-gradient 7 and -y
Choice 2: NONCONVEXPE gradient descent target rank and step size

Chengrun Yang, Lijun Ding, Ziyang Wu, Madeleine Udell

Cornell University

ConvexPE: convex and provable

o Get the square set and square unfolding [5] of QO ¢ RI>>1v.

= square set S = arg min|[[,,cq In — HnE[N]\S Iy,
SC|N]

= square unfolding Q1= reshape(WSD(Q)(l), 1lhes In: HnE[N]\SD I,), in which
g =(S51,..., S|S‘, Slc, e S]C\’;_ls‘) is a permutation map of the N modes

® Compute parameter tensor A by logistic loss minimization (by
proximal-proximal-gradient [6])

A = argmin Z Z —(Qn)ijloga(l;) — [1 — (Qn)i ] log|l — a(I )],

where S, ={T € RI>*oc - ||T||, < 7y [T, [T [l < 7}

AN

[
© Estimate propensities: P = o(A)

NonconvexPE: nonconvex, gradient descent

o Initialize core tensor and factor matrices G*, Ut*, ..., Ui <+ G U, ... U4

® Define objective
f(SA, {U;;[}ne[]v]) = Z _Qil'"’iN lOg U(-/Zl\il---z’N) — (1

Bpeei

in which A = G4 x, U# x5 -+ xy UL

AN

— Q“ZN) log[l — O'(Ail-"ijv)]7

o Gradient descent updates
o Estimate propensities: P = o(GM X U X9 -+ xn UR)

Algorithm Step 2: tensor completion

TenlPS: Given P and MNAR observations Bobs: get B

© Form an entrywise inverse propensity estimator for data tensor B as
X(CP) — Z(il,ig,...,iN)EQ %Bobs ® 8(1.1, c e ,iN), in which

1.0
= Q:={(i1,...,1N)|Bjy..iy is observed}

« &(i1...,1) is a binary tensor with the same shape as B, with value 1 at the (¢1,9,...,%5)-th entry

and 0 elsewhere.

® Do Tucker decomposition on X(P), get core tensor W(P) and factor matrices

© Estimate B by @@) — W(f]A)) X Q1(9A)) X«

AN

* XN QN(T)-

Theoretical guarantees

- Upper bound for propensity recovery error |1, 3]

Assume that P = o(A). Given a set S C |N], together with the following assumptions:

Al. Ag has bounded nuclear norm: there exists a constant 6 > 0 such that ||Agl[x < 0, /I1n.

A2. Entries of A have bounded absolute value: there exists a constant a > 0 such that ||A||max < a.

Suppose we run CONVEXPE with thresholds satisfying 7 > 6 and v > « to obtain an

estimate P of . With L. 1= sup,c_ 4 J(Aﬁ(_xy(l,», there exists a universal constant
C' > 0 such that if g+ Igc > C', with probability at least 1 IS+CI = the propensity
S

: : I 2 1 1
estimation error meP — Pl < 46[177'(\/@ | \@)

- Optimality of the square unfolding for propensity recovery: Instate the same

conditions as the previous lemma on propensity recovery error, and further assume that

there exists a constant ¢ > 0 such that r'™ < ¢I,, for every n € [N]. Then S = S
gives the tightest upper bound on the propensity estimation error ||P — P||r among all
unfolding sets S C |N].

Tensor completion error on cubical tensors (same size in every mode):

Consider an order-N cubical tensor ‘B with size Iy = --- = Iy = I and multilinear rank
rime = ... = " = < [, and two order-\N cubical tensors P and A with the same

shape as B. Each entry of B is observed with probability from the corresponding entry
of P. Assume I > rNlog I, and there exist constants ¢, &« € (0, o) such that
| A max < @, || Bl|max = 1. Further assume that for each n € | V|, the condition

number o1 (B™) /o,.(B™) < k is a constant independent of tensor sizes and dimensions.
Then under the conditions of the lemma on convex propensity recovery error, with
probability at least 1 — /!, the fixed multilinear rank (r,r,...,r) approximation @(TT))
computed from CONVEXPE and TENIPS with thresholds 7 > 6 and v > « satisfies

|B() — Bs W
< CN |
[B]]: I

in which C' depends on k.
Numerics

ConvexPE to recover a size-8 cubical propensity tensor with approximately low rank:

unfolding along one mode (1)

unfolding along one mode (2)

relative error
- - -

.00

I 5 6 7 8 —— square unfolding (1)
tensor order

___________ square unfolding (2)

Figure 2: “(1)": setting 7 =0, v = «; “(2)": setting 7 = 20, v = 2«

MNAR tensor completion on synthetic data:

relative error ||B(P) — Bl[¢/||B||r

Algorithm time (s) _ =
with P with Py with Ps
TENIPS 26 0.110 0.110 0.109
HOSVD_w [2] 35 0.129 0.116 0.110
SQUNFOLD 29 0.141 0.138 0.139
RECTUNFOLD 8 0.259 0.256 0.256
LsSTSQ >600 - - -
SO-HOSVD [7] >600 - - -

MNAR tensor completion on semi-synthetic data:

« real video tensor from [4]: B €
= synthetic parameter tensor A = (B — 128)/64

[O 255] 2200x 1080x 1920

(b) TENIPS, assuming
MCAR

(c) TENIPS, assuming
MNAR, with true P

Thanks!

(a) original (d) TENIPS, assuming

MNAR, with estimated P

= Chengrun Yang: cy438Qcornell.edu
= Madeleine Udell: udell@cornell.edu
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